

Esta ley indica la frecuencia con la que determinados alelos, variantes de un gen determinado que contienen información específica respecto a un carácter (por ejemplo el color de los ojos), deberían aparecer en una población. La ley establece también la frecuencia con la que determinados genotipos, combinación real de genes de la que un organismo es portador y puede trasmitir a sus descendientes, deberían aparecer en esta misma población. Mediante el estudio de estas frecuencias alélica ( o frecuencia génica) y genotípica, los científicos pueden identificar poblaciones que están cambiando genéticamente o evolucionando. También es posible predecir la presencia de anomalías genéticas en las poblaciones.
En 1908, el matemático británico Godfrey Harold Hardy y el médico alemán Wilhelm Weinberg describieron de forma independiente esta ley. El genetista estadounidense Sewall Wright, el matemático británico Ronald Fisher y el genetista británico John B. S. Haldane se basaron en la ley enunciada por Hardy y Weinberg para desarrollar teorías matemáticas sobre la evolución, algunas de ellas basadas en el concepto de la selección natural, según la cual el organismo mejor adaptado a su medio ambiente sobrevive y transmite sus características genéticas. Estas teorías constituyeron la base de una rama nueva de la ciencia conocida como genética de poblaciones- el estudio de la transmisión de los genes a través de poblaciones de organismos.
Frecuencia Génica y Fenotípica:En una población, cada individuo tiene dos alelos para cada gen. Estos alelos pueden ser iguales o diferentes, y un alelo puede ser dominante sobre el otro. Por ejemplo, en una muestra de 100 individuos de una población determinada, el gen que corresponde a una característica específica posee alelos A y a, en el que A es dominante sobre a. Cada individuo del grupo es portador de dos de estos alelos en una de las dos combinaciones o genotipos siguientes: AA, Aa, o aa. En una muestra de 100 personas, 33 individuos tienen el genotipo AA, es decir dos alelos A; 54 personas tienen el genotipo Aa, es decir un alelo A y otro a; y 13 sujetos presentan un genotipo aa, o lo que es lo mismo dos alelos a.
La frecuencia real para cada alelo en el grupo de muestra o frecuencia génica, viene determinada por la división del número total de cada tipo de alelo entre el número total de todos los alelos. Por ejemplo, la frecuencia real del alelo A en el grupo de muestra es de 0,60, dato que procede de dividir 120, el número total de alelos A (dos de cada uno de los 33 individuos con el genotipo A y uno de cada uno de los 54 individuos con genotipo Aa) entre 200, el número total de todos los alelos (dos para cada uno de los 100 individuos).
La ley de Hardy-Weinberg utiliza las frecuencias reales de alelos de una población para predecir las frecuencias genotípicas esperadas de ésta; es decir, el número de genotipos que deberían tener lugar en la población. Si se asume que un gen tiene dos alelos, A y a (cuyas frecuencias se representan matemáticamente como p y q, respectivamente), que pueden formar tres genotipos, AA, Aa y aa, pueden utilizarse las siguientes fórmulas para predecir las frecuencias genotípicas esperadas:
Frecuencia de AA = p × p = p2
Frecuencia de Aa = 2 × p × q = 2pq
Frecuencia de aa = q × q = q2
Por ejemplo, si la frecuencia de un alelo A en una población es igual a 0,60, entonces la frecuencia esperada de individuos con un genotipo AA es de 0,36, el resultado de multiplicar 0,60 por 0,60.
Equilibrio Hardy-Weinberg:Para determinar si la población conserva la misma proporción, o equilibrio, de genotipos a lo largo del tiempo, los científicos han comparado las frecuencias genotípicas esperadas de una población con sus frecuencias genotípicas reales (determinadas por la división del número total de cada genotipo en el grupo, entre el número total de individuos de dicho grupo)
De acuerdo con la ley de Hardy-Weinberg, este equilibrio se conserva en una población siempre que se cumplan cuatro condiciones. En primer lugar, los individuos deben seleccionar parejas al azar con independencia de los caracteres visibles, o fenotipos. Segundo, ningún genotipo puede verse favorecido de manera que su frecuencia aumente en la población a lo largo del tiempo. La tercera condición establece que no pueden introducirse alelos nuevos en la población, bien procedentes de individuos externos a la población o como consecuencia de alelos que han cambiado, o mutado, de una forma a otra. La última condición establece que el número de individuos y genotipos en la población debe permanecer elevado. Una población que cumple estos requisitos mantiene constantes las frecuencias génicas y genotípicas de generación en generación —la composición genética de la población nunca varía. Los genes poco comunes nunca desaparecen y los genes más habituales siguen siendo numerosos.
Evolución de las Poblaciones: Sin embargo, la mayoría de las poblaciones no mantienen un equilibrio genético y los genes existentes son remplazados por genes nuevos o más ventajosos. Esta evolución puede estar en relación con la selección natural —es decir, algunos miembros de la población con ciertos genotipos originan descendientes más fuertes o más sanos. Los cambios pueden deberse también a una mutación genética, variación o cambio en la información genética; a una deriva genética, pérdida de un alelo en una población por azar; a la migración, salida de individuos de la población por emigración o llegada de individuos de otra población; o a una disminución en el tamaño de una población. Todos estos factores suceden de forma natural a lo largo del tiempo. No obstante, las mutaciones genéticas pueden producirse también por la exposición a sustancias químicas y a materiales radiactivos nocivos.
Cuando dos especies comparten un carácter, como los ojos en el ser humano y el chimpancé, o las alas en aves y murciélagos, puede ser por una de dos razones: o el carácter estaba presente en el antepasado común de las dos especies y éstas lo comparten simplemente porque lo han heredado (en este caso se habla de homología de caracteres; los ojos del hombre y el chimpancé son homólogos); o el carácter no se encontraba en el antepasado común, sino que se ha adquirido por evolución convergente (en este caso se habla de caracteres análogos).
Es importante saber distinguir entre caracteres homólogos y análogos al reconstruir la filogenia o diversificación evolutiva de los organismos (véase Cladística). Se supone que dos especies tienen un parentesco próximo si se parecen mucho; pero esta hipótesis sólo es válida si el parecido responde a homología, no a analogía o convergencia. A veces es posible detectar la convergencia examinando los caracteres con detalle. Las alas de aves, murciélagos e insectos son superficialmente parecidas, pero sus estructuras internas son muy distintas: en los insectos, las alas tienen unas estructuras de sostén llamadas nervios, mientras que en aves y murciélagos la estructura de las alas es ósea; además, las alas están sujetas por huesos diferentes en aves y murciélagos; en efecto, los huesos de las alas de las aves corresponden por homología a los del segundo dedo de otros vertebrados; en el caso del murciélago, corresponden a los dedos dos a cinco.
Evolución Divergente: Es cuando dos o más especies descendientes de antecesores comunes son muy diferentes entre sí por adaptación a distintos medios (tapir y caballo).
La evolución convergente es cuando dos o más especies que descienden de antecesores diferentes se parecen en muchos caracteres (manatí y ballena), también este proceso es conocido como "convergencia adaptativa o evolución paralela.
Evolución convergente, evolución independiente de un mismo carácter o de caracteres similares en dos o más especies que pertenecen a líneas evolutivas independientes (por carácter no se entiende en este caso la personalidad, sino cualquier atributo físico o de conducta de un organismo). Estas líneas evolutivas independientes parten de formas ancestrales distintas del carácter estudiado que, poco a poco, convergen en una forma única.
Casi todos los ejemplos de convergencia se pueden interpretar en términos de adaptación a condiciones similares, sea el medio ambiente de los organismos o su forma de vida, como ocurre con las adaptaciones al movimiento. Las exigencias físicas del vuelo limitan drásticamente las formas posibles del órgano encargado de mantenerlo. La capacidad de volar se ha desarrollado de manera independiente en murciélagos, aves e insectos, además de en grupos ahora extinguidos y conocidos por sus fósiles, como los reptiles llamados pterosaurios. Todos estos animales han desarrollado alas por evolución convergente. Asimismo, todos los animales que se deben mover en el agua afrontan similares limitaciones físicas impuestas por el medio, y tanto los mamíferos acuáticos, como los delfines, y los peces han desarrollado cuerpos con la misma y eficaz forma hidrodinámica.
Existe otra Clasificación de Polipliodes:
En un ecosistema existen varios niveles por los cuales se estructuran los ecosistemas, estos son:
Relaciones en el medio ambiente
Relaciones Intraespecíficas: A nivel unicelular, tanto en organismos animales como vegetales, las relaciones entre los distintos individuos presentes en un medio determinado vienen condicionadas principalmente por factores de tipo físico y químico. En el caso de los organismos de mayor entidad biológica, de formas pluricelulares, cualquier relación entre individuos de una misma especie lleva siempre un componente de cooperación y otro de competencia, con predominio de una u otra en casos extremos. Así en una colonia de pólipos la cooperación es total, mientras que animales de costumbres solitarias, como la mayoría de las musarañas, apenas permiten la presencia de congéneres en su territorio fuera de la época reproductora. La colonia es un tipo de relación que implica estrecha colaboración funcional e incluso cesión de la propia individualidad. Los corales de un arrecife se especializan en diversas funciones: hay individuos provistos de órganos urticantes que defienden la colonia, mientras que otros se encargan de obtener el alimento y otros de la reproducción. Este tipo de asociación es muy frecuente también en las plantas, sobre todo las inferiores. En los vegetales superiores, debido a la incapacidad de desplazamiento, surgen formaciones en las que el conjunto crea unas condiciones adecuadas para cada individuo, por lo que se da una cooperación ecológica, al tiempo que se produce competencia por el espacio, impidiendo los ejemplares de mayor tamaño crecer a los plantones de sus propias semillas. En el reino animal nos encontramos con sociedades, como las de hormigas o abejas, con una estricta división del trabajo. En todos estos casos, el agrupamiento sigue una tendencia instintiva automática. A medida que se asciende en la escala zoológica encontramos que, además de ese componente mecánico de agrupamiento, surgen relaciones en las que el comportamiento o la etología de la especie desempeñan un papel creciente. Los bancos de peces son un primer ejemplo. En las grandes colonias de muchas aves (flamencos, gaviotas, pingüinos, etc.), las relaciones entre individuos están ritualizadas para impedir una competencia perjudicial.
La ecología de comunidades es el estudio de la organización y funcionamiento de las comunidades, las cuales son conjuntos de poblaciones interactuantes de las especies que viven en un área particular o hábitat. Los ecólogos estudian los rangos de las especies y las razones por las cuales algunas tienen un nicho mayor que otras, la estabilidad de comunidades los factores que la afectan, la influencia de un componente particular (por ejemplo, carnívoros) dentro de una comunidad, el ciclo de nutrientes, y la influencia del clima, lo mismo que otras variables. Se dispone de técnicas sofisticadas para la descripción y clasificación de las diferentes asociaciones de especies que conforman una comunidad. Estas técnicas están especialmente desarrolladas para el estudio de las comunidades vegetales (fitosociología).
Los estudios demuestran que la estructura de las comunidades puede cambiar en el tiempo, con frecuencia de una manera direccional, lo que se conoce como sucesión. Una comunidad puede verse como una máquina compleja que procesa energía y nutrientes. Para estudiar esta máquina, es necesario describir la red alimenticia y seguir el curso de la energía y los nutrientes a través de ella, desde los productores primarios (plantas verdes) hasta los herbívoros, carnívoros y descomponedores. Un principio de la ecología de comunidades es que la estabilidad de la comunidad es mayor a medida que es más diversa y más compleja es su red alimenticia (cadena alimenticia).
Muestreo no probabilístico:Aquél para el que no puede calcularse la probabilidad de extracción de una determinada muestra.